КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. аль-Фараби

Факультет физико-технический

Утверждено

на заседании Ученого совета Физико-технического факультета Протокол № 6 от 27 июня 2014 г.

Декан факультета

А. Е. Давлетов

СИЛЛАБУС

МАТЕРИАЛОВЕДЕНИЕ

для специальности «Вычислительная техника и программное обеспечение» (5В070400) бакалавриат

2 курс, семестр весенний, 3 кредита (2+1+0)

Преподаватель (лекции, семинары, СРС): Мигунова Анастасия Анатольевна

Телефон: 3773412 (КФТТиНФ), моб. 87054433515

e-mail: anastassiya.migunoya@gmail.com

каб. 528, 349

Цель и задачи дисциплины

Целью курса является сформировать у обучающихся базовые знания в области анализа атомарного, молекулярного, наноразмерного, поли- и монокристаллического, а также аморфного строения веществ, поведения проводящих, изолирующих и промежуточных материалов в различных полях — тепловых, электрических, магнитных, под воздействием деформирующих сил и различных видов излучений, с элементами кристаллографии, структурного и тензорного анализа, квантовой механики и классических методов математической физики.

Основной формой изложения материала курса являются лекции. На семинарские занятия отводится один час в неделю. Семинары предназначены для решения практических задач по темам лекционных занятий для лучшего закрепления теоретических основ. Для самостоятельной работы предлагаются домашние задания в форме задач и докладов на отдельные небольшие темы. Решение задач на семинарах предполагает использование расчетов и графической интерпретации результатов в программах Excel и Mathcad. Задачи данного курса взяты не из задачников. Они являются прямым следствием научных экспериментов. Источники входных данных обязательно указываются в задачах. Чаще всего это публикации в научных журналах и результаты физических экспериментов, полученные автором разработанного курса. Поскольку для обработки берутся модельные материалы, то есть хорошо изученные, ответами задач являются табличные значения расчетных параметров материалов.

Компетенции (результаты обучения): владение современными представлениями, теориями и расчетами поведения различных материалов во внешних силовых полях, таких как температурное, электрическое и магнитное, понимание свойств, проявляющихся при

механических воздействиях, на контакте двух веществ, ознакомление с областями использования различных свойств материалов.

Общие компетенции бакалавра:

При освоении курса "Материаловедение" студент должен знать:

- •Основы кристаллографического строения материалов, типы межатомных связей и дефектов
- Элементы статистической физики (распределения квантовых состояний структурных частиц по Ферми-Дираку и Бозе-Эйнштейну)
- Зонную теорию твердых тел, уравнение Шредингера для кристалла, функции Блоха, происхождение зон Бриллюэна, понятие эффективной массы
- Механические свойства материалов: упругость, пластичность, твердость, хрупкость и др.
- Тепловые свойства материалов (модели теплоемкости, теплопроводности, термического расширения)
- Электрические свойства материалов (температурную зависимость электропроводности, основные характеристики проводников, полупроводников и диэлектриков)
- Основы теории сверхпроводимости (теория Бардена-Купера-Шриффера, эффект Мейснера, эффекты Джозефсона, фазовые переходы 1, 2 и 1,5 рода)
- Магнитные свойства материалов (ферро-, пара и диамагнетики и их отличительные особенности)
- Оптические свойства материалов (явления при взаимодействии света с веществом) должен уметь:
 - Объяснять квантовые эффекты в материалах
 - Определять параметры кристаллических структур
 - Рассчитывать тензорные величины (напряжение, поляризуемость и др.)
 - Анализировать зонные диаграммы

должен владеть методами расчетов физических свойств материалов и построения графических зависимостей в программах Excel и Mathcad.

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Не-		Кол-	Макси-
де-	Название темы	во	мальный
ЛЯ		часов	балл
	Модуль 1 - Строение материалов		
1	Лекция 1. Виды сил связи атомов в молекулах и кристаллических	1	0
	решетках. Внутренняя структура твердых тел. Понятие		
	электроотрицательности и потенциала взаимодействия. Ионная,		
	ковалентная, металлическая, Ван-дер-Ваальсова, водородная связи		
	Семинар 1. Расчет сил взаимодействия для различных видов связи	1	12
	в реальных материалах		
	СРСП 1. Энергия связи. Виды поляризуемости. Гибридизация	1	3
	атомных орбиталей		
2	Лекция 2. Элементы статистической физики. Невырожденные и	1	0
	вырожденные коллективы. Статистика Максвелла-Больцмана.		
	Распределения квантовых состояний структурных частиц по		
	Ферми-Дираку и Бозе-Эйнштейну		
	Семинар 2. Решение задач: Вырожденные и невырожденные	1	12
	коллективы. Определение вероятности заполнения фермиевскими		
	частицами (электронами и дырками) определенных энергетических		

	уровней в полупроводниковых материалах и металлах. Расчет		
	образования куперовских пар в критической точке и накопления их		
	спектра простых веществ.	1	3
	СРСП 2. Функция распределения фермионов. Функция	1	3
2	распределения бозонов	1	0
3	Лекция 3. Зонная теория твердых тел. Энергетический спектр	1	0
	кристаллов в пространстве волнового вектора. Уравнение		
	Шредингера для кристалла, функции Блоха. Происхождение зон		
	Бриллюэна. Понятие эффективной массы. Волны де Бройля	1	1.0
	Семинар 3. Решение задач: Контактные явления. Расчет работы	1	12
	выхода, контактной разности потенциалов, ширины области		
	пространственного заряда в полупроводниках		
	СРСП 3. Температурная зависимость энергетической зонной	1	3
	структуры в собственных и примесных полупроводниках.		
4	Лекция 4. Обратное пространство. Построение сферы Эвальда.	1	0
	Решетки Бравэ. Ячейка Вигнера-Зейтца		
	Семинар 4. Определение индексов Миллера плоскостей, узлов и	1	12
	направлений в решетках различных сингоний		
	СРСП 4. Элементы кристаллографии. Пространственная решетка.	1	3
	Индексы Миллера. Трансляционная симметрия		
5	Лекция 5. Методы исследования кристаллической структуры	1	0
	твердых тел. Рентгеноструктурный анализ. Формула Вульфа-		
	Брэггов. Условие Лауэ.		
	Семинар 5. Расчет дифрактограмм и электронограмм порошковых	1	12
	материалов и монокристаллов		
	СРСП 5. Атомный и структурный факторы рассеяния. Фазовый	1	3
	состав материалов. Метод порошка (Дебая)		
6	Лекция 6. Дефекты в материалах. Собственные точечные тепловые	1	0
	дефекты по Шоттки и по Френкелю. Примеси. Твердые растворы		
	внедрения, замещения, вычитания. Уравнение диффузии. Законы		
	Фика. Радиационные дефекты. Каскады смещений		
	Семинар 6. Расчет диффузионных и ионно-имплантированных	1	12
	структур		
	СРСП 6. Линейные двумерные дефекты (дислокации,	1	3
	дисклинации). Вектор Бюргерса. Границы зерен		
7	Лекция 7. Аморфные материалы. Материалы с наноструктурой.	1	0
	Фотонные кристаллы. Метаматериалы		
	Контрольная работа	1	10
	1 Рубежный контроль		100
	Промежуточный экзамен	2	100
	Модуль 2 – Свойства материалов		
8	Лекция 8. Термодинамическое взаимодействие материалов.	1	0
_	Фазовые состояния. Фазовые диаграммы двух-, трех- и	-	-
	многокомпонентных смесей. Вариантность системы.		
	Электрохимический потенциал. Правило фаз Гиббса		
	Семинар 8. Расчет и построение фазовых диаграмм	1	11
	двухкомпонентных систем	1	11
	СРСП 8. Фазовые диаграммы двухкопонентных систем с	1	2
	химическими соединениями. Конгруэнтное превращение в сплавах.	1	~
	Дальтониды и бертоллиды. Интерметаллиды. Монотектика		
<u> </u>	депотопиды и осртольнды. интерметальнды. инопотектика		

9	Лекция 9. Механические свойства материалов: упругость, пластичность, твердость, ползучесть	1	0
	Семинар 9. Нахождение механических характеристик материалов	1	11
	по диаграммам деформации. Расчет тензора напряжений. Расчет	1	11
	твердости сплавов и микротвердости материалов по Виккерсу и		
	Бринеллю		
	СРСП 9. Модули упругости и их взаимосвязи. Характеристики	1	2
	сдвига. Наклёп. Сверхпластичность. Характеристики изгиба.	1	2
10	Характеристики кручения	1	0
10	Лекция 10. Тепловые свойства материалов. Модели теплоемкости	1	U
	Дюлонга-Пти, Джоуля-Коппа, Эйнштейна, Дебая. Фононы.		
	Теплопроводность. Тепловое расширение твердых тел	1	11
	Семинар 10. Расчет теплоемкости, теплопроводности,	1	11
	термического расширения, температуры Дебая предложенных		
	материалов в программе Mathcad	1	
	СРСП 10. Нормальные колебания решетки. Нормальный	1	2
	осциллятор. Статистика фононов	_	
11	Лекция 11. Электрические свойства материалов.	1	0
	Электропроводность металлов и полупроводников. Подвижность		
	носителей заряда в полупроводниках. Температурные зависимости		
	подвижности и электропроводности.		
	Семинар 11. Расчет электропроводности металлов, сравнение с	1	11
	табличными значениями. Расчет электропроводности и		
	подвижности полупроводников, тензора поляризуемости и		
	дипольного момента диэлектриков		
	СРСП 11. Закон Видемана-Франца. Поляризация диэлектриков.	1	2
	Явления в сильных электрических полях. Туннельный эффект		
	Зинера и эффект Ганна		
12	Лекция 12. Явление сверхпроводимости. Теория Бардена-Купера-	1	0
	Шриффера. Эффект Мейснера. Понятие фазового перехода.		
	Сверхпроводимость 1, 2 и 1,5 рода. Вихри Абрикосова		
	Семинар 12. Расчет плотности тока в сверхпроводниках, скачка	1	11
	теплоемкости в критической точке, условий левитации, параметров		
	джозефсоновских контактов в среде Mathcad		
	СРСП 12. Эффекты Джозефсона. ВТСП-керамики. СП провода.	1	2
	СКВИД		
13	Лекция 13. Магнитные свойства материалов. Закон	1	0
	намагничивания Рэлея. Магнитный гистерезис. Ферро-, пара и		
	диамагнетики.		
	Семинар 13. Анализ параметров магнитных материалов по	1	11
	магнитному гистерезису		
	СРСП 13. Магнитотвердые и магнитомягкие материалы.	1	2
	Ферримагнетики и антиферромагнетики. Ферримагнетики.		
	Антиферромагнетики. Магнитный резонанс. Суперпарамагнетизм.		
	Виды магнетосопротивления		
14	Лекция 14. Взаимодействие света с веществом. Оптические	1	0
	явления в материалах		
	Семинар 14. Определение глубины скин-слоя в металлах при	1	11
	облучении монохроматическим светом, расчет плазменной частоты	-	
	полупроводников, сравнение с табличными данными, расчет		
	ширины запрещенной зоны полупроводниковых и		
	диэлектрических пленок по спектрам пропускания и отражения в		
	программе Ехсеl		
	nporpumme Encor		

	СРСП 14. Фотопроводимость полупроводников. Люминесценция	1	2
15	Лекция 15. Современные наноматериалы, получение, свойства	1	0
	Контрольная работа	1	9
	2 Рубежный контроль		100
	Экзамен	2	100

Итоговая оценка по дисциплине = $\frac{PK1 + PK2}{2} \cdot 0.6 + 0.1MT + 0.3ИK$

Здесь РК1, РК2 – оценки рубежного контроля (сумма оценок текущего контроля), МТ – оценка за Midterm Exam; ИК – оценка итогового контроля (экзамен во время сессии). Итоговая оценка по дисциплине рассчитывается и округляется в системе «Универ» автоматически.

Внимание! Необходимо выполнять задания своевременно! Каждый студент набирает 15 баллов в неделю. Получить недостающие баллы на следующей неделе невозможно.

СПИСОК ЛИТЕРАТУРЫ

Основная:

- 1 Епифанов Г. И. Физика твердого тела. М.: ВШ. 1977. 288 с.
- 2 Давыдов А. С. Теория твердого тела. M.: Hayка. 1976. 637 с.
- 3 Павлов П. В., Хохлов А. Ф. Физика твердого тела. М.: Высшая школа. 2000. 494 с.
- 4 Киттель Ч. Введение в физику твердого тела. М.: Наука 1978. 791 с.
- 5 Ашкрофт Н., Мермин Н. Физика твердого тела. В двух томах. М.: Мир. 1979
- 6 Зиненко В. И., Сорокин Б. П., Турчин П. П. Основы физики твердого тела. М.: Изд. Физ. Мат. Лит. 2001. 333 с.
- 7 Николаев И. Н., Маймистов А. И. Сборник задач по курсу «Физика твердого тела». М. 2009. 60 с.
- 8 Задачи по физике твердого тела. Под ред. Голдсмида Г. Дж. М.: Наука. 1976. 429 с.

Дополнительная:

- 1 Краткий справочник физико-химических величин. Под ред. Мищенко А. А. Л.: Химия. 1974. 200 с.
- 2 Гинзбург И. Ф. Введение в физику твердого тела. Часть І. Новосибирск. 2003. 218 с.
- 3 Шевченко О. Ю. Основы физики твердого тела. -С.-Петербург. 2010. 76 с.

АКАДЕМИЧЕСКАЯ ПОЛИТИКА КУРСА

Все виды работ необходимо выполнять и защищать в указанные сроки. Студенты, не сдавшие очередное задание или получившие за его выполнение менее 50% баллов, имеют возможность отработать указанное задание по дополнительному графику. Студенты, пропустившие лабораторные занятия по уважительной причине, отрабатывают их в дополнительное время в присутствии лаборанта, после допуска преподавателя. Студенты, не выполнившие все виды работ, к экзамену не допускаются. Кроме того, при оценке учитывается активность и посещаемость студентов во время занятий.

Будьте толерантны, уважайте чужое мнение. Возражения формулируйте в корректной форме. Плагиат и другие формы нечестной работы недопустимы. Недопустимы подсказывание и списывание во время сдачи СРС, промежуточного контроля и финального экзамена, копирование решенных задач другими лицами, сдача экзамена за другого студента. Студент, уличенный в фальсификации любой информации курса, несанкционированном доступе в Интранет, пользовании шпаргалками, получит итоговую оценку «F».

За консультациями по выполнению самостоятельных работ (СРС), их сдачей и защитой, а также за дополнительной информацией по пройденному материалу и всеми

другими возникающими вопросами по читаемому курсу обращайтесь к преподавателю в период его офис-часов.

Оценка по буквенной системе	Цифровой эквивалент баллов	%-ное содержание	Оценка по традиционной системе
A	4,0	95-100	Отлично
A-	3,67	90-94	1
B+	3,33	85-89	Хорошо
В	3,0	80-84	· ·
B-	2,67	75-79	1
C+	2,33	70-74	Удовлетворительно
С	2,0	65-69	1
C-	1,67	60-64	1
D+	1,33	55-59	1
D-	1,0	50-54	1
F	0	0-49	Неудовлетворительно
I	-	-	«Дисциплина не завершена»
(Incomplete)			(не учитывается при вычислении <i>GPA</i>)
P	-	-	«Зачтено»
(Pass)			(не учитывается при вычислении GPA)
NP	-	-	«Не зачтено»
(No Pass)			(не учитывается при вычислении <i>GPA</i>)
W	-	=	«Отказ от дисциплины»
(Withdrawal)			(не учитывается при вычислении GPA)
AW			Снятие с дисциплины по академическим
(Academic Withdrawal)			причинам
			(не учитывается при вычислении GPA)
AU	-	-	«Дисциплина прослушана»
(Audit)			(не учитывается при вычислении <i>GPA</i>)
Атт.		30-60	Аттестован
		50-100	
Не атт.		0-29	Не аттестован
		0-49	
R (Retake)	-	-	Повторное изучение дисциплины

Рассмотрено на заседании кафедры протокол № 36 от 10 июня 2014 г.

Заведующий КФТТиНФ, профессор

О. Ю. Приходько

Старший преподаватель

А. А. Мигунова